Pedestrian safety is one primary concern in autonomous driving. The under-representation of vulnerable groups in today's pedestrian datasets points to an urgent need for a dataset of vulnerable road users. In this paper, we first introduce a new vulnerable pedestrian detection dataset, BG Vulnerable Pedestrian (BGVP) dataset to help train well-rounded models and thus induce research to increase the efficacy of vulnerable pedestrian detection. The dataset includes four classes, i.e., Children Without Disability, Elderly without Disability, With Disability, and Non-Vulnerable. This dataset consists of images collected from the public domain and manually-annotated bounding boxes. In addition, on the proposed dataset, we have trained and tested five state-of-the-art object detection models, i.e., YOLOv4, YOLOv5, YOLOX, Faster R-CNN, and EfficientDet. Our results indicate that YOLOX and YOLOv4 perform the best on our dataset, YOLOv4 scoring 0.7999 and YOLOX scoring 0.7779 on the mAP 0.5 metric, while YOLOX outperforms YOLOv4 by 3.8 percent on the mAP 0.5:0.95 metric. Generally speaking, all five detectors do well predicting the With Disability class and perform poorly in the Elderly Without Disability class. YOLOX consistently outperforms all other detectors on the mAP (0.5:0.95) per class metric, obtaining 0.5644, 0.5242, 0.4781, and 0.6796 for Children Without Disability, Elderly Without Disability, Non-vulnerable, and With Disability, respectively. Our dataset and codes are available at https://github.com/devvansh1997/BGVP.
translated by 谷歌翻译
荧光显微镜是促进生物医学研究发现的关键驱动力。但是,随着显微镜硬件的局限性和观察到的样品的特征,荧光显微镜图像易受噪声。最近,已经提出了一些自我监督的深度学习(DL)denoising方法。但是,现有方法的训练效率和降解性能在实际场景噪声中相对较低。为了解决这个问题,本文提出了自我监督的图像denoising方法噪声2SR(N2SR),以训练基于单个嘈杂观察的简单有效的图像Denoising模型。我们的noings2SR Denoising模型设计用于使用不同维度的配对嘈杂图像进行训练。从这种训练策略中受益,Noige2SR更有效地自我监督,能够从单个嘈杂的观察结果中恢复更多图像细节。模拟噪声和真实显微镜噪声的实验结果表明,噪声2SR优于两个基于盲点的自我监督深度学习图像Denoising方法。我们设想噪声2SR有可能提高更多其他类型的科学成像质量。
translated by 谷歌翻译
量子计算机是下一代设备,有望执行超出古典计算机范围的计算。实现这一目标的主要方法是通过量子机学习,尤其是量子生成学习。由于量子力学的固有概率性质,因此可以合理地假设量子生成学习模型(QGLM)可能会超过其经典对应物。因此,QGLM正在从量子物理和计算机科学社区中受到越来越多的关注,在这些QGLM中,可以在近期量子机上有效实施各种QGLM,并提出了潜在的计算优势。在本文中,我们从机器学习的角度回顾了QGLM的当前进度。特别是,我们解释了这些QGLM,涵盖了量子电路出生的机器,量子生成的对抗网络,量子玻尔兹曼机器和量子自动编码器,作为经典生成学习模型的量子扩展。在这种情况下,我们探讨了它们的内在关系及其根本差异。我们进一步总结了QGLM在常规机器学习任务和量子物理学中的潜在应用。最后,我们讨论了QGLM的挑战和进一步研究指示。
translated by 谷歌翻译
视觉检测是自动驾驶的关键任务,它是自动驾驶计划和控制的关键基础。深度神经网络在各种视觉任务中取得了令人鼓舞的结果,但众所周知,它们容易受到对抗性攻击的影响。在人们改善其稳健性之前,需要对深层视觉探测器的脆弱性进行全面的了解。但是,只有少数对抗性攻击/防御工程集中在对象检测上,其中大多数仅采用分类和/或本地化损失,而忽略了目的方面。在本文中,我们确定了Yolo探测器中与物体相关的严重相关对抗性脆弱性,并提出了针对自动驾驶汽车视觉检测物质方面的有效攻击策略。此外,为了解决这种脆弱性,我们提出了一种新的客观性训练方法,以进行视觉检测。实验表明,针对目标方面的拟议攻击比分别在KITTI和COCO流量数据集中分类和/或本地化损失产生的攻击效率高45.17%和43.50%。此外,拟议的对抗防御方法可以分别在Kitti和Coco交通方面提高检测器对目标攻击的鲁棒性高达21%和12%的地图。
translated by 谷歌翻译
无监督的域适应(UDA)是机器学习和模式识别领域的新兴的研究主题,其旨在通过从源域传输知识来帮助学习未标记的目标域。
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Humans have internal models of robots (like their physical capabilities), the world (like what will happen next), and their tasks (like a preferred goal). However, human internal models are not always perfect: for example, it is easy to underestimate a robot's inertia. Nevertheless, these models change and improve over time as humans gather more experience. Interestingly, robot actions influence what this experience is, and therefore influence how people's internal models change. In this work we take a step towards enabling robots to understand the influence they have, leverage it to better assist people, and help human models more quickly align with reality. Our key idea is to model the human's learning as a nonlinear dynamical system which evolves the human's internal model given new observations. We formulate a novel optimization problem to infer the human's learning dynamics from demonstrations that naturally exhibit human learning. We then formalize how robots can influence human learning by embedding the human's learning dynamics model into the robot planning problem. Although our formulations provide concrete problem statements, they are intractable to solve in full generality. We contribute an approximation that sacrifices the complexity of the human internal models we can represent, but enables robots to learn the nonlinear dynamics of these internal models. We evaluate our inference and planning methods in a suite of simulated environments and an in-person user study, where a 7DOF robotic arm teaches participants to be better teleoperators. While influencing human learning remains an open problem, our results demonstrate that this influence is possible and can be helpful in real human-robot interaction.
translated by 谷歌翻译
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
translated by 谷歌翻译
Human parsing aims to partition humans in image or video into multiple pixel-level semantic parts. In the last decade, it has gained significantly increased interest in the computer vision community and has been utilized in a broad range of practical applications, from security monitoring, to social media, to visual special effects, just to name a few. Although deep learning-based human parsing solutions have made remarkable achievements, many important concepts, existing challenges, and potential research directions are still confusing. In this survey, we comprehensively review three core sub-tasks: single human parsing, multiple human parsing, and video human parsing, by introducing their respective task settings, background concepts, relevant problems and applications, representative literature, and datasets. We also present quantitative performance comparisons of the reviewed methods on benchmark datasets. Additionally, to promote sustainable development of the community, we put forward a transformer-based human parsing framework, providing a high-performance baseline for follow-up research through universal, concise, and extensible solutions. Finally, we point out a set of under-investigated open issues in this field and suggest new directions for future study. We also provide a regularly updated project page, to continuously track recent developments in this fast-advancing field: https://github.com/soeaver/awesome-human-parsing.
translated by 谷歌翻译
Supervised Deep-Learning (DL)-based reconstruction algorithms have shown state-of-the-art results for highly-undersampled dynamic Magnetic Resonance Imaging (MRI) reconstruction. However, the requirement of excessive high-quality ground-truth data hinders their applications due to the generalization problem. Recently, Implicit Neural Representation (INR) has appeared as a powerful DL-based tool for solving the inverse problem by characterizing the attributes of a signal as a continuous function of corresponding coordinates in an unsupervised manner. In this work, we proposed an INR-based method to improve dynamic MRI reconstruction from highly undersampled k-space data, which only takes spatiotemporal coordinates as inputs. Specifically, the proposed INR represents the dynamic MRI images as an implicit function and encodes them into neural networks. The weights of the network are learned from sparsely-acquired (k, t)-space data itself only, without external training datasets or prior images. Benefiting from the strong implicit continuity regularization of INR together with explicit regularization for low-rankness and sparsity, our proposed method outperforms the compared scan-specific methods at various acceleration factors. E.g., experiments on retrospective cardiac cine datasets show an improvement of 5.5 ~ 7.1 dB in PSNR for extremely high accelerations (up to 41.6-fold). The high-quality and inner continuity of the images provided by INR has great potential to further improve the spatiotemporal resolution of dynamic MRI, without the need of any training data.
translated by 谷歌翻译